1. Data is adapted from information found at: www.cancer.org/cancer/ skincancer-melanoma/detailedguide/melanoma-skin-cancer-survival-rates
  2. Shoo BA, Sagebiel RW, Kashani-Sabet M. Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. Journal of the American Academy of Dermatology. 2010;62(5):751-6.
  3. Veenhuizen KC, De Wit PE, Mooi WJ, et al. Quality assessment by expert opinion in melanoma pathology: experience of the pathology panel of the Dutch Melanoma Working Party. J Pathol. 1997;182(3):266-72.
  4. Farmer ER, Gonin R, Hanna MP. Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum Pathol. 1996;27(6):528-31.
  5. McGinnis KS, Lessin SR, Elder DE, et al. Pathology review of cases presenting to a multidisciplinary pigmented lesion clinic. Archives of dermatology. 2002;138(5):617-21.
  6. Cerroni, et. al., Melanocytic Tumors of Uncertain Malignant Potential, Am J Surg Pathol, Vol 34, No 3, March 2010
  7. Clarke L et al. Clinical validation of a gene expression signature that differentiates benign nevi from malignant melanoma J Cutan Pathol 2015; 42:244-252.
  8. Cockerell et al. The Influence of a Gene Expression Signature on the Diagnosis and Recommended Treatment of Melanocytic Tumors by Dermatopathologists. Medicine. 2016; 95(40):e4887.
  9. Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol 2011;12:245-55.
  10. Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci U S A 2005;102:6092-7.
  11. Koh SS, Opel ML, Wei JP, Yau K, Shah R, Gorre ME et al. Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue. Mod Pathol 2009;22:538-46.
  12. Mauerer A, Roesch A, Hafner C, Stempfl T, Wild P, Meyer S et al. Identification of new genes associated with melanoma. Exp Dermatol 2011;20:502-7.
  13. Scatolini M, Grand MM, Grosso E, Venesio T, Pisacane A, Balsamo A et al. Altered molecular pathways in melanocytic lesions. Int J Cancer 2010;126:1869-81.
  14. Smith AP, Hoek K , Becker D. Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther 2005;4:1018-29.
  15. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005;11:7234-42.
  16. Wachsman W, Morhenn V, Palmer T, Walls L, Hata T, Zalla J et al. Noninvasive genomic detection of melanoma. Br J Dermatol 2011;164:797-806.
  17. Wistuba, II, Behrens C, Lombardi F, Wagner S, Fujimoto J, Raso MG et al. Validation of a proliferation-based expression signature as prognostic marker in early stage lung adenocarcinoma. Clin Cancer Res 2013;19:6261-71.
  18. Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, et al. Characterization of an antigen that is on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997. 6:199–208.
  19. Wadelin F, Fulton J, McEwan PA, Spriggs KA, Emsley J, Heery DM. Leucine-rich repeat protein PRAME: expression, potential functions and clinical implications for leukaemia. Mol Cancer. 2010 Aug 27;9:226.
  20. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005; 122:835–847.
  21. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mol Med. 2013 Feb;13(2):296-304. Review. PubMed PMID: 23228130.
  22. Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun. 2012;4(1):31-40.
  23. Nemeth J, Angel P, Hess J: Dual role of S100A8 and S100A9 in inflammation-associated cancer. Antiinflamm Antiallergy Agents Med Chem 2009; 8: 329–336.
  24. Donato R: S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33: 637–668.
  25. Heizmann CW, Fritz G, Schafer BW: S100 proteins: structure, functions and pathology.Front Biosci 2002; 7:d1356–d1368.
  26. Weitzenfeld P, Ben-Baruch A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett. Oct 18 2013.
  27. Warf MB, Flake DD, Adams D, Gutin A, Kolquist KA, Wenstrup RJ, Roa BB. Analytical validation of a melanoma diagnostic gene signature using formalin-fixed paraffin-embedded melanocytic lesions. Biomarker Med 2015: 9:407-416.
  28. Cockerell et al. The influence of a gene-expression signature on the treatment of diagnostically challenging melanocytic lesions. Per Med. 2017;14(2):123-130.
  29. Clarke et al. An Independent Validation of a Gene Expression Signature to Differentiate Malignant Melanoma from Benign Melanocytic Nevi. Cancer. 2016 Oct 21. doi: 10.1002/cncr.30385.
  30. Ko J, et al. Diagnostic Distinction of Malignant Melanoma and Benign Nevi by a Gene Expression Signature and Correlation to Clinical Outcomes. Cancer Epidemiol Biomarkers Prev. 2017 Apr 4. doi: 10.1158/1055-9965.EPI-16-0958